Trợ giúp:Chỗ thử

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Formation[edit source][sửa | sửa mã nguồn]

454 million year old volcanic ash between layers of limestone in the catacombs of Peter the Great's Naval Fortress in Estonia near Laagri. The diameter of objective cover is 58 mm (2.3 in). This is remnant of one of the oldest large eruptions preserved.

Volcanic ash is formed during explosive volcanic eruptions, phreatomagmatic eruptions and during transport in pyroclastic density currents.

Explosive eruptions occur when magma decompresses as it rises, allowing dissolved volatiles (dominantly water and carbon dioxide) to exsolve into gas bubbles. As more bubbles nucleate a foam is produced, which decreases the density of the magma, accelerating it up the conduit. Fragmentation occurs when bubbles occupy ~70-80 vol% of the erupting mixture. When fragmentation occurs, violently expanding bubbles tear the magma apart into fragments which are ejected into the atmosphere where they solidify into ash particles. Fragmentation is a very efficient process of ash formation and is capable of generating very fine ash even without the addition of water.

Volcanic ash is also produced during phreatomagmatic eruptions. During these eruptions fragmentation occurs when magma comes into contact with bodies of water (such as the sea, lakes and marshes) groundwater, snow or ice. As the magma, which is significantly hotter than the boiling point of water, comes into contact with water an insulating vapor film forms (Leidenfrost effect). Eventually this vapor film will collapse leading to direct coupling of the cold water and hot magma. This increases the heat transfer which leads to the rapid expansion of water and fragmentation of the magma into small particles which are subsequently ejected from the volcanic vent. Fragmentation causes an increase in contact area between magma and water creating a feedback mechanism, leading to further fragmentation and production of fine ash particles.

Pyroclastic density currents can also produce ash particles. These are typically produced by lava dome collapse or collapse of the eruption column. Within pyroclastic density currents particle abrasion occurs as particles interact with each other resulting in a reduction in grain size and production of fine grained ash particles. In addition, ash can be produced during secondary fragmentation of pumice fragments, due to the conservation of heat within the flow. These processes produce large quantities of very fine grained ash which is removed from pyroclastic density currents in co-ignimbrite ash plumes.

Physical and chemical characteristics of volcanic ash are primarily controlled by the style of volcanic eruption. Volcanoes display a range of eruption styles which are controlled by magma chemistry, crystal content, temperature and dissolved gases of the erupting magma and can be classified using the volcanic explosivity index (VEI). Effusive eruptions (VEI 1) of basaltic composition produce <105 m3 of ejecta, whereas extremely explosive eruptions (VEI 5+) of rhyolitic and dacitic composition can inject large quantities (>109 m3) of ejecta into the atmosphere. Another parameter controlling the amount of ash produced is the duration of the eruption: the longer the eruption is sustained, the more ash will be produced. For example, the second phase of the 2010 eruptions of Eyjafjallajökull was classified as VEI 4 despite a modest 8 km high eruption column, but the eruption continued for a month, which allowed a large volume of ash to be ejected into the atmosphere.

Properties[edit source][sửa | sửa mã nguồn]

Chemical[edit source][sửa | sửa mã nguồn]

The types of minerals present in volcanic ash are dependent on the chemistry of the magma from which it erupted. Considering that the most abundant elements found in magma are silica (SiO2) and oxygen, the various types of magma (and therefore ash) produced during volcanic eruptions are most commonly explained in terms of their silica content. Low energy eruptions of basalt produce a characteristically dark coloured ash containing ~45 - 55% silica that is generally rich in iron (Fe) and magnesium (Mg). The most explosive rhyolite eruptions produce a felsic ash that is high in silica (>69%) while other types of ash with an intermediate composition (e.g., andesite or dacite) have a silica content between 55-69%.

The principal gases released during volcanic activity are watercarbon dioxidesulfur dioxidehydrogenhydrogen sulfidecarbon monoxide and hydrogen chloride. These sulfur and halogen gases and metals are removed from the atmosphere by processes of chemical reaction, dry and wet deposition, and by adsorption onto the surface of volcanic ash.

It has long been recognised that a range of sulfate and halide (primarily chloride and fluoride) compounds are readily mobilised from fresh volcanic ash.; It is considered most likely that these salts are formed as a consequence of rapid acid dissolution of ash particles within eruption plumes, which is thought to supply the cations involved in the deposition of sulfate and halide salts.

While some 55 ionic species have been reported in fresh ash leachates the most abundant species usually found are the cations Na+K+Ca2+ and Mg2+ and the anions ClF and SO42−. Molar ratios between ions present in leachates suggest that in many cases these elements are present as simple salts such as NaCl and CaSO4. In a sequential leaching experiment on ash from the 1980 eruption of Mount St. Helenschloride salts were found to be the most readily soluble, followed by sulfate salts Fluoride compounds are in general only sparingly soluble (e.g., CaF2MgF2), with the exception of fluoride salts of alkali metals and compounds such as calcium hexafluorosilicate (CaSiF6). The pH of fresh ash leachates is highly variable, depending on the presence of an acidic gas condensate (primarily as a consequence of the gases SO2HCl and HF in the eruption plume) on the ash surface.

The crystalline-solid structure of the salts act more as an insulator than a conductor. However, once the salts are dissolved into a solution by a source of moisture (e.g., fog, mist, light rain, etc.), the ash may become corrosive and electrically conductive. A recent study has shown that the electrical conductivity of volcanic ash increases with (1) increasing moisture content, (2) increasing soluble salt content, and (3) increasing compaction (bulk density). The ability of volcanic ash to conduct electric current has significant implications for electric power supply systems.

Physical[edit source][sửa | sửa mã nguồn]

Components[edit source][sửa | sửa mã nguồn]

Particle of volcanic ash from Mount St. Helens.

Volcanic ash particles erupted during magmatic eruptions are made up of various fractions of vitric (glassy, non-crystalline), crystalline or lithic (non-magmatic) particles. Ash produced during low viscosity magmatic eruptions (e.g., Hawaiian and Strombolian basaltic eruptions) produce a range of different pyroclasts dependent on the eruptive process. For example, ash collected from Hawaiian lava fountains consists of sideromelane (light brown basaltic glass) pyroclasts which contain rare microlites (small quench crystals) and phenocrysts. Slightly more viscous eruptions of basalt (e.g., Strombolian) form a variety of pyroclasts from irregular sideromelane droplets to blocky tachylite (black to dark brown microcrystalline pyroclasts). In contrast, most high-silica ash (e.g. rhyolite) consists of pulverised products of pumice (vitric shards), individual phenocrysts (crystal fraction) and some lithic fragments (xenoliths).

Ash generated during phreatic eruptio[e]ns primarily consists of hydrothermally altered lithic and mineral fragments, commonly in a clay matrix. Particle surfaces are often coated with aggregates of zeolite crystals or clay and only relict textures remain to identify pyroclast types.

Morphology[edit source][sửa | sửa mã nguồn]

Light microscope image of ash from the 1980 eruption of Mount St. Helens, Washington. The morphology (shape) of volcanic ash is controlled by a plethora of different eruption and kinematic processes. Eruptions of low-viscosity magmas (e.g., basalt) typically form droplet shaped particles. This droplet shape is, in part, controlled by surface tension, acceleration of the droplets after they leave the vent, and air friction. Shapes range from perfect spheres to a variety of twisted, elongate droplets with smooth, fluidal surfaces.

The morphology of ash from eruptions of high-viscosity magmas (e.g., rhyolite, dacite, and some andesites) is mostly dependent on the shape of vesicles in the rising magma before disintegration. Vesicles are formed by the expansion of magmatic gas before the magma has solidified. Ash particles can have varying degrees of vesicularity and vesicular particles can have extremely high surface area to volume ratios. Concavities, troughs, and tubes observed on grain surfaces are the result of broken vesicle walls. Vitric ash particles from high-viscosity magma eruptions are typically angular, vesicular pumiceous fragments or thin vesicle-wall fragments while lithic fragments in volcanic ash are typically equant, or angular to subrounded. Lithic morphology in ash is generally controlled by the mechanical properties of the wall rock broken up by spalling or explosive expansion of gases in the magma as it reaches the surface.

The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles. Vesicle shape and density play only a minor role in the determination of grain shape in phreatomagmatic eruptions. In this sort of eruption, the rising magma is quickly cooled on contact with ground or surface water. Stresses within the "quenched" magma cause fragmentation into five dominant pyroclast shape-types: (1) blocky and equant; (2) vesicular and irregular with smooth surfaces; (3) moss-like and convoluted; (4) spherical or drop-like; and (5) plate-like.

Density[edit source][sửa | sửa mã nguồn]

The density of individual particles varies with different eruptions. The density of volcanic ash varies between 700–1200 kg/m3 for pumice, 2350–2450 kg/m3 for glass shards, 2700–3300 kg/m3 for crystals, and 2600–3200 kg/m3 for lithic particles. Since coarser and denser particles are deposited close to source, fine glass and pumice shards are relatively enriched in ash fall deposits at distal locations. The high density and hardness (~5 on the Mohs Hardness Scale) together with a high degree of angularity, make some types of volcanic ash (particularly those with a high silica content) very abrasive.

Grain size[edit source][sửa | sửa mã nguồn]

Volcanic ash grain size distributions. Volcanic ash consists of particles (pyroclasts) with diameters <2 mm (particles >2 mm are classified as lapilli), and can be as fine as 1 μm. The overall grain size distribution of ash can vary greatly with different magma compositions. Few attempts have been made to correlate the grain size characteristics of a deposit with those of the event which produced it, though some predictions can be made. Rhyolitic magmas generally produce finer grained material compared to basaltic magmas, due to the higher viscosity and therefore explosivity. The proportions of fine ash are higher for silicic explosive eruptions, probably because vesicle size in the pre-eruptive magma is smaller than those in mafic magmas. There is good evidence that pyroclastic flows produce high proportions of fine ash by communition and it is likely that this process also occurs inside volcanic conduits and would be most efficient when the magma fragmentation surface is well below the summit crater.

Dispersal[edit source][sửa | sửa mã nguồn]

Ash plume rising from Mount Redoubt after an eruption on April 21, 1990. Ash plume from Mt Cleveland, a stratovolcano in the Aleutian Islands.

Ash particles are incorporated into eruption columns as they are ejected from the vent at high velocity. The initial momentum from the eruption propels the column upwards. As air is drawn into the column, the bulk density decreases and it starts to rise buoyantly into the atmosphere. At a point where the bulk density of the column is the same as the surrounding atmosphere, the column will cease rising and start moving laterally. Lateral dispersion is controlled by prevailing winds and the ash may be deposited hundreds to thousands of kilometres from the volcano, depending on eruption column height, particle size of the ash and climatic conditions (especially wind direction and strength and humidity).

Ash fallout occurs immediately after the eruption and is controlled by particle density. Initially, coarse particles fall out close to source. This is followed by fallout of accretionary lapilli, which is the result of particle agglomeration within the column. Ash fallout is less concentrated during the final stages as the column moves downwind. This results in an ash fall deposit which generally decreases in thickness and grain size exponentially with increasing distance from the volcano. Fine ash particles may remain in the atmosphere for days to weeks and be dispersed by high-altitude winds. These particles can impact on the aviation industry (refer to impacts section) and, combined with gas particles, can affect global climate.

Volcanic ash plumes can form above pyroclastic density currents, these are called co-ignimbrite plumes. As pyroclastic density currents travel away from the volcano, smaller particles are removed from the flow by elutriation and form a less dense zone overlying the main flow. This zone then entrains the surrounding air and a buoyant co-ignimbrite plume is formed. These plumes tend to have higher concentrations of fine ash particles compared to magmatic eruption plumes due to the abrasion within the pyroclastic density current.